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Abstract

Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to
sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein
composition. Although the nerve growth factor (NGF) receptors, TrkA and p75NTR collaborate with each other at the plasma
membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We
hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75NTR both reside
in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1,
caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75NTR. When microtubules were
induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75NTR, was bound to microtubules in DRMs
and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs,
yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in
detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75NTR partition into membrane rafts by
different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form
signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon
guidance.

Citation: Pryor S, McCaffrey G, Young LR, Grimes ML (2012) NGF Causes TrkA to Specifically Attract Microtubules to Lipid Rafts. PLoS ONE 7(4): e35163.
doi:10.1371/journal.pone.0035163

Editor: Catherine Faivre-Sarrailh, Aix Marseille University, France

Received January 11, 2012; Accepted March 13, 2012; Published April 4, 2012

Copyright: � 2012 Pryor et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MG was supported by the Whitehall Foundation (www.whitehall.org/), NIH NS070746-01, NS061303-01, NIH COBRE NCRR Grant # P20 RR015583, NIH
BRIN NCRR Grant #PR-16455-02 and New Zealand Funding from: Health Research Council, Cancer Society, Neurological Foundation, Lottery Health, Lottery
Science, Real Kids Trust, Palmerston North Medical Research Foundation, and Massey University. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Mark.Grimes@mso.umt.edu

¤a Current address: MAPS Applied Research Center, Edina, Minnesota, United States of America
¤b Current address: AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand

Introduction

Cells profoundly change behavior according to instructions

provided by molecular signals. Neurons choose life over

programmed cell death in response to neurotrophin signaling,

and extend processes that grow towards neurotrophin-secreting

cells. Neurotrophin signaling is mediated by receptor tyrosine

kinases of the Trk family, TrkA, B, and C, which, respectively,

interact specifically with nerve growth factor (NGF), brain-derived

neurotrophic factor (BDNF), and neurotrophin-3 (NT3). Trk

signaling differs from other receptor tyrosine kinases because of the

involvement of a co-receptor, the pan-neurotrophin receptor,

p75NTR. TrkA and p75NTR collaborate at the plasma membrane

to bind NGF [1,2,2–4], yet appear to have an antagonistic

relationship in other ways. TrkA and p75NTR are endocytosed

separately after binding NGF [5–7]. p75NTR when activated by

itself causes apoptosis, but in the presence of Trk signaling,

neurons are protected from programmed cell death [8,9]. NGF

influences microtubule dynamics at axon tips to cause axon

growth in Trk-expressing cells [10]. In contrast, when Trk is not

present, p75NTR together with its other co-receptors, the Nogo-66

receptor (NgR), and Lingo-1 mediates growth cone repulsion

[11,12]. Thus, the relationship between TrkA and p75NTR can be

characterized as a duel, where the two partners meet briefly, then

go their separate ways, pursuing different agendas. How do they

go their separate ways after their first meeting? The molecular

interactions that separate the two receptors at the plasma

membrane are not known.

The interaction of proteins with clusters of different kinds of

lipids in membranes plays a role in signal transduction, membrane

traffic sorting, and axon guidance [13–15]. For instance, GPI-

anchored proteins and Src-family kinases are clustered in

detergent-resistant sphingolipid-cholesterol lipid rafts [16]. Simi-

larly, several receptor tyrosine kinases and G-protein coupled

receptors move into lipid rafts upon activation, along with their

effectors, and, interestingly, some receptors move out of lipid rafts

when they are activated [17]. This implies that dynamic

association of receptors with lipid rafts may play a role in sorting

at the plasma membrane. The ganglioside, GM1 and other lipid

raft markers are excluded from clathrin-coated pits, which contain

the transferrin receptor (TfR) and other non-raft proteins [18]. We

hypothesize that lipid rafts may play a role in sorting p75NTR

and TrkA into different endocytosis pathways.
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Receptors are endocytosed by two or more distinct pathways. In

general, receptors may be internalized by clathrin-mediated

endocytosis (CME), or a pathway that involves sphingolipid-

cholesterol lipid rafts, termed raft/caveolar endocytosis (RCE)

[19–22]. The CME vs. RCE endocytosis choice has not been

directly described for Trk receptors. Trk receptors are internalized

by CME [23–27] and by a clathrin-independent mechanism that

involves the EH-domain containing protein, Pincher [28–32].

p75NTR is internalized in sympathetic neurons by both CME and

a mechanism that involves lipid rafts [25,33].

Here, we asked whether the association of TrkA and p75NTR

with detergent-insoluble membranes (DRMs) is affected by NGF

and in vitro reactions that have been shown to cause microtubules

to polymerize [34]. DRMs are defined as the fraction of the

detergent-insoluble material that float on iodixanol (OptiprepTM)

equilibrium gradients. This method is similar to that used by

others to characterize components of sphingolipid-cholesterol lipid

rafts, but offers higher resolution of raft components of different

densities and quantitative comparison of relative amounts of

components that are found in detergent-resistant membranes. We

found that NGF and microtubules had profoundly different effects

on the association of TrkA and p75NTR with DRMs. The data

suggest that the portion of TrkA which associates with microtu-

bules and lipid rafts has a distinct function separate from

formation of signaling endosomes.

Results

NGF and its Receptors in Detergent-resistant Membranes
(DRMs)

In cell fractionation studies in which 125I-NGF is bound to

PC12 cells in the cold, and the cells are washed and warmed to

allow internalization of NGF-bound receptors [7,35,36], NGF

caused rapid internalization of TrkA into endosomes that could be

recovered in organelles that emerged when cells were mechani-

cally permeabilized by a single passage through a tight passage

created by a ball whose diameter is very close to that of a

surrounding cylinder (Balch homogenizer [35,36]). After 10 min,

about 40% of the TrkA is internalized, compared to a background

endocytosis of about 5% without NGF. Under these conditions, at

least 30% of NGF was reproducibly associated with the detergent-

insoluble pellet after extraction with 1% non-ionic detergent

(Triton X-100, NP-40 or IGEPAL; see Table 1). In contrast, only

1–4% of 125I-transferrin is associated with the detergent-insoluble

pellet under identical experimental conditions (Table 1). The

significant difference between the amount of NGF vs. transferrin

associated with the detergent-insoluble pellet leads to the

hypothesis that NGF receptors are recruited into DRMs that

would float when the pellet was resuspended layered under an

iodixanol equilibrium gradient.

We used a similar pulse-stimulation protocol to investigate the

association of NGF and its receptors, TrkA and p75NTR with DRMs:

cells were bound to 125I-NGF in the cold, then washed and warmed

for defined periods. Cells were lysed in non-ionic detergent and the

insoluble material was subjected to equilibrium flotation iodixanol

gradients (Figure 1). The peak at r= 1.155–1.165 g/ml is

defined as DRMs, which separated from higher density non-

floating material (Figure 1A). NGF was present in DRMs on the

plasma membrane before warming (Figure 1A, 0 min) and

persisted for 30 min. There was little change in the amount

associated with the floating peak over time (Figure 1B), although

the density of the floating peak increased transiently (Figure 1C).

Rat dorsal root ganglia neurons displayed a similar floating

DRM peak containing NGF, though the density of this peak

was slightly higher than that derived from PC12 cells

(Figure 1D). These data suggest that PC12 cells are a valid

model for neurons for the study of the DRM fraction containing

NGF receptors.

To test the hypothesis that lipid rafts play a role in sorting TrkA

and p75NTR into different endocytic pathways, we focused on the

time points of 0 and 10 min. At these times, TrkA and p75NTR

associated with floating DRMs in a peak at the same density as
125I-NGF (Figure 2; see below).

Microtubules in Rafts
Previously, we showed that tubulin could be detected in the

detergent-resistant pellet from PC12 cells [34]. Since tubulin can

be palmitoylated and the palmitoyl group when attached to

proteins often confers association with DRMs [37,38], we asked

whether tubulin could be detected in floating DRMs (Figure 2A).

In previous work, in vitro reactions with ATP enhanced tubulin

polymerization leading to increased amounts of microtubules in

the detergent-resistant pellet [34]. These data show that in vitro

reactions with ATP can be used to manipulate microtubule

polymerization. In vitro reactions increased by 9-fold the amount of

tubulin in the floating DRM peak (Figure 2). Under these

conditions, NGF and TrkA both increased 4–5 fold (Figure 2). In

contrast, p75NTR was reduced by about half in the floating peak

after in vitro reactions (Figure 2). Flotillin was not affected,

indicating that in vitro reactions do not artifactually produce a

general aggregation of membranes (Figure 2). Thus, the amount of

NGF and TrkA receptors in floating DRM specifically correlates

with the presence of microtubules.

GM1 Addition Increased NGF, TrkA, and Microtubules in
DRMs

We asked if treatments that are known to affect the amount

and the activity of TrkA in lipid rafts also affect microtubules in

DRMs. The ganglioside, GM1 has been shown to activate Trk

receptors and prevent apoptosis in sympathetic neurons and

PC12 cells, which is hypothesized to be due to increased TrkA

association within lipid rafts, [39–43]. Overexpression of the

enzyme that produces GM1, however, has also been shown to

decrease amounts of specific proteins associated with rafts and

suppress TrkA dimerization, which is required for signaling

activity [44]. These data suggest that TrkA signal transduction

causes its recruitment to lipid rafts. One possibility is that GM1

at very high levels may also dilute rafts or change the properties

of the membrane such that signaling is impeded. To determine

whether changes in lipid rafts affected the recruitment of TrkA

Table 1. Amount of Radioactive Ligands Associated With Cell
Fractions.

Cell Fraction
125I-Ligand

Transferrin NGF

% total SEM % total SEM

1000 6 g pellet

NP40 soluble 67.2 3.2 56.6 4.0

NP40 insoluble 4.3 2.0 30.1 4.3

1000 6 g supernatant 30.4 1.8 14.6 0.5

Cells were bound to radiolabelled ligand, washed, and subjected to
internalization 10 min at 37uC. Mechanical permeabilization, fractionation, and
detergent extraction was performed exactly as described [35,36].
doi:10.1371/journal.pone.0035163.t001

TrkA in Microtubule-Rafts
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and p75NTR, we measured the effect of adding GM1 on the

amount of NGF, its receptors, and microtubules in DRMs.

GM1 increased NGF and Trk in DRMs more than 2-fold

(Figure 3A, B). In contrast, p75NTR and flotillin were affected

by GM1 in the opposite way. GM1-treated cells had less than

half the amounts of p75NTR and flotillin in floating DRMs

compared to those of control (Figure 3C). It is important to

note that the fraction of p75NTR and flotillin in DRMs is

constitutively high, about 20% without GM1 treatment,

compared to TrkA (,2%). p75NTR and flotillin are known to

preferentially associate with lipid rafts in many different cell

types, and this property may be related to their similar decrease

in DRMs in GM1-treated cells. The data are consistent with

high levels of GM1 diluting rafts, which affects proteins that

preferentially or constitutively associate with rafts differently

than proteins that transiently associate with rafts in response to

stimulation.

We also found that the microtubules that associated with

floating DRMs increased more than 3-fold after GM1 treatment

(Figure 3A and C, tubulin). Thus, GM1’s effects, as with in vitro

reactions that cause microtubules to polymerize, were to increase

microtubules in DRMs, which correlated with increases in NGF

and TrkA. In both cases p75NTR behaved in the opposite manner.

The data suggest that NGF is mostly bound to TrkA, not p75NTR,

Figure 1. NGF associates with lipid rafts before and after initiation of membrane traffic and signal transduction. 125I-NGF was bound
to PC12 cells in the cold, the cells were washed and warmed for the indicated periods of time. 0 min represents cells bound to NGF but not warmed.
Flotation equilibrium iodixanol gradients were performed using sonication to resuspend the detergent-resistant fraction. A) Plots of DRM gradients
after pulse-stimulation with 125I-NGF for 0, 2, 10, and 30 min. Refractive index measurements were taken on each fraction and converted into density
using a formula derived empirically (see Methods); density is plotted on the x-axis. There also was non-floating NGF in the detergent-resistant pellet,
whose distribution in fractions of higher density is consistent with diffusion in a bottom-loaded sample. B, C) Amount of NGF and density of floating
DRMs. The amounts of 125I-NGF in the floating DRM peak containing 125I-NGF were quantified and compared to amounts in detergent-soluble
membranes and other fractions (B, %WC = percent of whole cell). Amounts in the floating DRM peak are plotted as the percent in the whole cell. A
transient increase in the density of the floating 125I-NGF DRM peak was noted after 2 and 10 min (C). A higher density suggests a higher protein:lipid
ratio. Error bars are SEM. D) DRM fraction from rat dorsal root ganglia neurons bound to 125I-NGF and warmed for 10 min as above. The floating peak
had a slightly higher density (1.18 g/ml) than that in PC12 cells (1.16 g/ml).
doi:10.1371/journal.pone.0035163.g001

TrkA in Microtubule-Rafts
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in floating DRMs, because the changes in the distribution of NGF

paralleled that of TrkA.

We used two different methods to break up the insoluble

material in the detergent-resistant pellet: sonication and nuclease

(Benzonase) treatment (see Materials and Methods). When

sonication was used, the density of the floating peak was

approximately 1.16 g/ml. Trk was associated with two peaks on

these gradients, one of which coincided with the floating NGF

peak (Figure 2). The other peak was of higher density (1.23 g/ml)

and did not coincide with NGF (Figure 2). p75NTR was also found

in the 1.16 g/ml floating peak with NGF and Trk, and little was

present in other regions of the gradient (Figure 2). A fraction of

tubulin also remained in the non-floating bottom of the gradient

under these conditions (Figure 2). These data indicate that a

fraction of the microtubules in DRMs were reproducibly resistant

to sonication. To further investigate this possibility we determined

whether results could be obtained without sonication. We found

that Benzonase treatment facilitated handling of the DRM fraction

without sonication (Figure 4). Quantitative distribution of

receptors into floating DRMs was similar after sonication or

Benzonase treatment, but the receptors floated into a peak of

slightly higher density (1.20 g/ml) and there was less non-floating

material in benzonase-treated samples (Figure 4A, B). Actin

filaments were also present in floating DRMs under these

conditions (very few were detected after sonication), but there

was no change in their association with DRMs after in vitro

reactions (Figure 4C). Importantly, comparable increases in NGF

and microtubules in floating DRMs after in vitro reactions were

observed (Figure 4B,C).

TrkA was reproducibly dephosphorylated in floating DRMs.

Under conditions where phospho-TrkA (pTrkA) was detected in

the detergent-sensitive (P1M) fraction, and in endosomes (see

below, Figure 7A), TrkA but not pTrkA was present in floating

DRMs (Figure 4A). The presence of the tyrosine phosphatase,

SHP-1 in floating DRMs (Figure 4A, B) suggests a mechanism by

which TrkA is selectively dephosphorylated in this fraction.

The similar increases in NGF, TrkA and microtubules in DRMs

in response to GM1 and in vitro reactions suggest that TrkA may

bind to microtubules in this fraction. Indeed, TrkA was co-

precipitated when microtubules were stabilized with taxol and

immunoprecipitated from floating DRMs (Figure 5A). If biotiny-

lated tubulin was added during the last 5 min of in vitro reactions, it

was incorporated into floating DRMs, suggesting that newly

polymerized microtubules were associated with this fraction

(Figure 5B, biotin-tubulin). Streptavidin agarose beads recovered

TrkA from this fraction and biotinylated tubulin was pulled down

by TrkA immunoprecipitation (Figure 5B). p75NTR was not

reproducibly detected in microtubule immunoprecipitations in

these experiments. These data suggest that microtubule polymer-

ization and attachment to DRMs recruits TrkA.

Under these conditions, biotinylated tubulin accumulated in

discrete foci at the plasma membrane of permeabilized cells

Figure 2. In vitro reactions cause microtubules to associate with lipid rafts, attracting NGF and TrkA but excluding p75NTR. Cells were
bound to NGF and sonicated DRMs fractionated on flotation equilibrium gradients as in Figure 1 (0 min internalization). A) Western blots with anti-
TrkA, -p75NTR, -tubulin, and -flotillin (indicated) from cells fractionated before (–ATP) and after (+ATP) in vitro reactions with ATP. Gradients were
collected from the bottom, so lower numbered fractions have higher density. The floating DRM peak is in the middle of the gradients. B) The plot in
the lower left is 125I-NGF in DRMs from cells before (closed diamonds) or after (open circles) in vitro reactions with ATP. The amounts of 125I-NGF, and
proteins shown in A in the floating DRM peak coincident with 125I-NGF, were quantified and compared to amounts in detergent-soluble membranes
and other fractions. Amounts in the floating DRM peak are plotted as the percent in the whole cell under these conditions (–ATP, +ATP). Error bars are
SEM. In vitro reactions with ATP caused a significant increase of TrkA (p,0.01) and NGF and tubulin (p,0.001), and a decrease in p75NTR (p,0.05) in
floating DRMs after 0 min internalization.
doi:10.1371/journal.pone.0035163.g002

TrkA in Microtubule-Rafts
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(Figure 5C, D). Long, intact microtubules were not evident in the

permeabilized cell preparation, so we cannot exclude the

possibility of some kind of alternate assembly of tubulin subunits

at these discrete foci on the plasma membrane. Nevertheless, our

data above showing that NGF and TrkA are recruited into DRMs

along with microtubules, but not p75NTR or flotillin, indicate that

sorting specificity is reconstituted.

NGF Affected the Amount of its Receptors in Rafts
We compared the effects of NGF on TrkA and p75NTR in

floating DRMs. Without in vitro reactions, NGF caused a 1.5- to 2-

fold increase of both TrkA and p75NTR in the floating peak

(Figure 6A, no rxn). In contrast, after in vitro reactions, NGF

caused TrkA to increase, and p75NTR to decrease in the floating

DRMs (Figure 6A, +in vitro reaction). It has been noted

previously that NGF signaling enhances tubulin polymerization

[45,46]. These data, together with that showing that microtu-

bules assemble and associate with floating DRMs during in vitro

reactions, suggest that NGF signaling may enhance microtubule

association with DRMs during these reactions. Indeed, NGF

significantly increased amounts of microtubules in floating

DRMs, which correlated with increased TrkA in this fraction

(Figure 6B, TrkA and tubulin). In contrast, p75NTR was

significantly reduced in floating DRMs after NGF treatment

under these conditions (Figure 6B, p75NTR), and flotillin was

unchanged by NGF (Figure 6B, flotillin). These results indicate

that NGF differently affected localization of the two co-receptors

in floating DRMs under conditions where microtubules

assemble and associate with membranes.

TrkA in Detergent Resistant Endosomal Fractions
One possible outcome of sorting in rafts could be for conveying

receptors into different endosomes [5,6,7]. We asked whether

TrkA could be detected in lipid rafts associated with microtubules

in endosomes. We examined endosomes using organelle fraction-

ation methods described previously [7,34]. Organelles that

emerged from mechanically permeabilized cells were subjected

to velocity sedimentation followed by floatation equilibrium

centrifugation on iodixanol gradients. Endosomes containing

activated TrkA and p75NTR were recovered from cells treated

with NGF as previously described (Figure 7A) [7]. To isolate lipid

rafts associated with endosomes, organelles released from

mechanically permeabilized cells were treated with detergent

and centrifuged at 100,0006 g. The pellet was resuspended and

applied to iodixanol velocity gradients that separate microtubules

from other material as previously described [34]. TrkA was

present in detergent-resistant endosomal fractions that contained

microtubules, and amounts increased after NGF treatment and in

vitro reactions that enhanced microtubule polymerization

(Figure 7B, input, MT). When microtubules were immunoprecip-

itated from this fraction, TrkA was bound to them after NGF

treatment and in vitro reactions (Figure 7B, +ATP, NGF, MTIP).

In contrast, p75NTR was barely detected in this detergent-resistant

endosomal fraction, and none was bound to microtubules

(Figure 7B, p75). Phosphorylated TrkA was not detected in the

detergent-resistant endosome fraction, though it was present in

endosomes (Figure 7A), which is consistent with it being

dephosphorylated in DRMs extracted from whole cells (Figure 4).

Since TrkA was phosphorylated in endosomes, we asked if the

tyrosine phosphatase, SHP-1 was present. SHP-1 was detected

only in trace amounts, or not at all, in endosomes; it was found in

fractions at the bottom of equilibrium gradients, indicating that it

was weakly associated and transiently bound to organelles during

the first velocity gradient sedimentation (Figure 7A). The data

suggest that a portion of TrkA is sorted into DRMs, dephosphor-

ylated, and endocytosed by a mechanism that involves microtu-

bules. p75NTR does not employ this mechanism, though it

associates with DRMs. Activated TrkA is endocytosed by a

Figure 3. The ganglioside, GM1 affects the partitioning of NGF,
its receptors, and microtubules in floating DRMs. GM1 was pre-
incubated with cells at 65 mM. Control samples in the same experiment
were treated identically except no GM1 was added. Cells were bound to
125I-NGF and sonicated DRMs were floated on iodixanol equilibrium
gradients as in Figure 1 (0 min). A) Western blots showing that TrkA
and tubulin were increased in floating DRMs with GM1 treatment. B)
125I-NGF in floating DRMs (left, plotted as in Figure 1) increased with
GM1 treatment (filled circles) compared to control (open triangles).
The amount of 125I-NGF in floating DRMs, plotted as a fraction of that
in the whole cell as in Figure 2, increased in GM1-treated cells (p,0.1).
C) Data from western blots with anti-TrkA, -p75NTR, -flotillin and -
tubulin (indicated) were quantified and the amount in the floating
DRM peak coincident with 125I-NGF are plotted as the percent of the
whole cell for control and GM1-treated cells. The amount of p75NTR in
the floating DRMs decreased by half (from 19% to 8%) after GM1
treatment (p,0.1). Flotillin was also decreased (p,0.1), while TrkA
(p,0.1) and tubulin (p,0.01) were increased by GM1.
doi:10.1371/journal.pone.0035163.g003

TrkA in Microtubule-Rafts
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different mechanism that excludes the phosphatase, SHP-1 to

form signaling endosomes (Figure 7A) [7].

Discussion

In light of the effects of GM1 shown here, and many previous

studies, we assume that the floating, detergent-resistant mem-

branes derive from sphingolipid-cholesterol rafts [13,17], so for the

purpose of this discussion, we will use the term lipid rafts to refer to

these membranes. The two NGF receptors, p75NTR and TrkA,

differed in their association with microtubules in lipid rafts in their

initial response to NGF. NGF stimulates association of TrkA and

NGF to newly-polymerized microtubules with lipid rafts, but not

p75NTR. We believe that in vitro reactions reconstitute a sorting

step that is difficult to discern in whole cells, which directly sorts

TrkA and p75NTR away from each other. The interaction of TrkA

with microtubules in lipid rafts has implications for signal

transduction, membrane traffic sorting, and axon growth.

Figure 4. Association of NGF receptors and cytoskeletal elements with DRMs under different experimental conditions. A) Western
blots showing TrkA and p75NTR in floating DRMs prepared after 10 min NGF treatment and using nuclease (Benzonase) rather than sonication to
break up nucleic acids prior to equilibrium density gradients. Western blots of flotation equilibrium gradients of detergent-resistant fraction were
probed with anti-TrkA, -pTrkA, -SHP-1, -p75NTR, and -tubulin (indicated). Blots include the detergent-sensitive (P1M) fraction and size standards (S) to
the left of DRM gradient fractions. B) Left: 125I-NGF in DRM without (open squares) and with (closed circles) in vitro reactions with ATP. Right:
Quantification of chemiluminescent signals from western blots is compared to 125I-NGF for Benzonase-treated samples as in A. Fraction number is
plotted on the x-axis of plot on the left; fraction 1 has the highest density. Signals from western blots were quantified and plotted vs. density together
with 125I-NGF (closed circles) on the right. The y-axis for TrkA (closed squares), p75NTR (open circles), SHP-1 (open squares), and tubulin (closed
triangles) is arbitrary units (chemiluminescent pixel volume). C) Western blots showing actin in floating DRMs prepared as in A, with and without in
vitro reactions with ATP (–, +ATP). Data obtained under these conditions for TrkA, tubulin, and actin were quantified and plotted as in Figure 2.
After 10 min internalization, in vitro reactions with ATP caused a significant increase of TrkA (p,0.01) and NGF and tubulin (p,0.001) in
floating DRMs. A decrease in actin (+ATP) was noted but was not statistically significant.
doi:10.1371/journal.pone.0035163.g004

TrkA in Microtubule-Rafts
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A surprising finding is that TrkA was not phosphorylated in

lipid rafts under the conditions that we have used to define them.

NGF activates TrkA and rapidly stimulates its endocytosis

[7,35,36], yet we reproducibly could not detect phosphorylated

TrkA in floating DRMs under any conditions in this study, either

before (Figure 4) or after in vitro reactions (not shown). This was the

case under conditions when pTrkA was detected in detergent-

sensitive (P1M) fractions and endosome fractions not treated with

detergent in the same or similar experiments (Figures 4, 7) [7].

This was puzzling because co-distribution of NGF and TrkA

under different conditions (in vitro reactions, Figure 2; GM1

treatment, Figure 3) indicate that NGF was bound to TrkA in

floating DRMs, and NGF stimulated TrkA’s association with

DRMs (Figure 6). The data suggest that a phospatase acts on TrkA

in DRMs. Consistent with this, we detected robust amounts of the

tyrosine phosphatase, SHP-1 (PTPN6) in floating DRMs (Figure 4).

These results are not consistent with some previous studies that

define lipid rafts using different methods [47–50]. Rafts defined as

membranes resistant to carbonate extraction contain activated

TrkA, bound to NGF and phosphorylated SHC and PLCc [50].

Importantly, floating membranes isolated after detergent extrac-

tion and carbonate extraction have both been called lipid rafts, but

the lipid and protein composition is very different for membranes

isolated by these methods [13,17]. 40% of the total TrkA was

found in rafts isolated after carbonate extraction [50], compared

with 2–6% in floating DRMs isolated after the detergent

extraction method used here (Figures 2,3,4). In contrast, no TrkA

was detected in rafts defined as Brij-58-insoluble floating

membranes from mouse cerebellar and hippocampal neurons

[51]. p75NTR is sorts into these rafts in response to NGF and this

association is blocked by a PKA inhibitor. These different results

may possibly be explained by association of Trks and p75NTR with

other proteins in different cells, but it is more likely that different

detergents define rafts with different compositions [13].

Figure 5. TrkA is bound to microtubules in floating DRMs.
Floating DRMs were isolated after 10 min NGF treatment and
in vitro reactions. A) Microtubules were immunoprecipitated from
the floating peak with anti-b-tubulin and western blotted for TrkA
(upper panel) and tubulin (lower panel). B) In vitro reactions without
(ATP only) or with biotinylated tubulin added during the last 5 min of
the reaction (+biotin-tubulin) were performed. The floating DRM peak
was immunoprecipitated with streptavidin or anti-TrkA (indicated) and
western blotted for anti-TrkA (upper panel) and anti-biotin (lower
panel). p75NTR was not reproducibly detected in microtubule immuno-
precipitations from DRMs under these conditions. C, D) Images of
permeabilized cells after in vitro reactions with biotinylated tubulin
added during the last 5 min of the reaction. Texas red streptavidin
stained discreet foci at or near the plasma membrane, shown in a group
of permeabilized cells in C and an individual cell in D.
doi:10.1371/journal.pone.0035163.g005

Figure 6. NGF differently affects association of TrkA and
p75NTRwith floating DRMs. A) Floating DRMs were isolated using
Benzonase treatment after 10 min without (open diamonds) and with
(closed squares) NGF treatment without (no rxn, left) and with (+in vitro
rxn, right) subsequent in vitro reactions with ATP. TrkA (upper panels)
and p75NTR (lower panels) were quantified from western blots probed
simultaneously in the same antibody solution, exposed for the same
amount of time, for all conditions. Data are plotted using the same y-
axis (chemiluminescence for TrkA and p75NTR) for all conditions. In
vitro reactions had little influence on the amounts of TrkA in floating
DRMs in the absence of NGF, but increased TrkA in DRMs in the
presence of NGF. In vitro reactions caused p75NTR to increase in the
floating peak in the absence of NGF, but decrease in the presence of
NGF. B) Amounts of TrkA, p75NTR, tubulin, and flotillin in the floating
DRM peak prepared using sonication as in Figure 2, plotted as the
percent of the whole cell for control (–NGF) and NGF-treated (+NGF)
for cells subjected to in vitro reactions. Under these conditions, NGF
caused an increase in TrkA (p,0.1) and tubulin (p,0.05) in floating
DRMs, yet caused a significant decrease (p,0.05) in p75NTR in floating
DRMs.
doi:10.1371/journal.pone.0035163.g006
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Or data is consistent with a number of other studies that

distinguish RCE as a mechanism for rapid receptor signal

attenuation and not for formation of persistent signaling

endosomes. NGF stimulation caused a fraction of TrkA to rapidly

associate with microtubules in lipid rafts (Figures 5, 6), and this

association was retained in a fraction of endosomes (Figure 7B).

This sorting step is probably mediated by interactions with other

proteins. For example, the docking/adaptor protein, Frs3

predominantly partitions to detergent-insoluble lipid rafts, and

was shown recently to bind both TrkA and microtubules and

[52,53]. Association of TrkA with lipid rafts may affect the extent

to which CME or RCE play a role in TrkA endocytosis. RCE does

not require caveolin expression [19,22]. PC12 cells express little or

no caveolin, and overexpression of caveolin causes rapid

downregulation and diminishes the duration of TrkA signaling

in response to NGF [54]. For the epidermal growth factor (EGF)

receptor, ligand concentration affects sorting between CME and

RCE. At low EGF concentrations, the receptor is predominantly

internalized by CME, whereas at high concentrations, a greater

fraction is internalized by RCE, resulting in rapid transport on

microtubules to late endosomes and lysosomes for degradation

[55–57]. Along these lines, Lakadamyali et al. [58] distinguished

EGF-containing endosomes in two populations, one was dynamic

and rapidly matured and transported on microtubules to join the

degradative pathway, the other static and longer-lived, remaining

near the cell periphery. These mechanisms may be employed by

other receptors. It has been shown that disruption of microtubules

and actin filaments abrogates the association of G-protein coupled

receptors (b-adrenergic receptors) and Gas with lipid rafts [59].

The transforming growth factor- b (TGF-b) receptor is another

example of a plasma membrane receptor that is sorted into either

CME- or RCE-derived endosomes [60]. Similar to the EGFR, the

receptor’s choice between CME vs. RCE dictates the rate of

receptor down-regulation, the duration of signaling, and the type

of Smad effectors that are activated by receptors. Our data suggest

that a fraction of TrkA, like EGFR, is sorted to the RCE pathway

and internalized by a microtubule-dependent mechanism. Ex-

pression of caveolin likely enhances this mechanism [54]. That

TrkA was dephosphorylated in rafts suggests that RCE does not

form signaling endosomes.

Hibbert et al. [25], showed that BDNF is internalized by

sympathetic neurons very slowly through binding to p75NTR but

not TrkA, that a greater fraction of p75NTR is associated with lipid

rafts than TrkA, and that some NGF is associated with rafts. These

data are all consistent with in PC12 cells. This paper also shows

that in the absence of Trk activation, the BDNF- p75NTR complex

is associated with lipid rafts, but when TrkB is expressed, the

amount of BDNF in rafts is reduced [25]. We found that NGF by

itself slightly increased both TrkA and p75NTR in rafts (Figure 6A,

left plots), but after in vitro reactions that promote microtubule

polymerization, p75NTR was sorted away from rafts, while NGF

and TrkA were sorted into rafts (Figure 6A, right plots and

Figure 6B). Aside from possible sorting differences between TrkA

and TrkB, different amounts of ligand and receptor expression, or

different experimental systems and protocols, the two experiments

are in fact consistent with one another if we hypothesize that in

Hibbert, et al., BDNF is bound mostly to p75NTR in rafts, whereas

in ours, NGF was mostly bound to TrkA in rafts. Consistent with

our results with TrkA in PC12 cells, TrkB is recruited into lipid

rafts in cortical neurons treated with BDNF [61]. Cortical neurons

do not express (or express very little) p75NTR. When these cells are

made to express p75NTR, TrkB is reduced in lipid rafts [61].

Disruption of rafts by cholesterol depletion affects short-term

synaptic modulation but not neuronal survival in this system,

indicating that raft-borne receptors initiate local but not

retrograde signaling [61]. This is consistent with our finding that

TrkA was dephosphorylated in rafts, including endosomal rafts

(Figures 4, 7), and supports the hypothesis that TrkA in rafts plays

a local role by attracting microtubules.

Sorting of receptors into specialized signaling endosomes in

neural cells may involve mechanisms that differ from those in

canonical recycling and degradative endocytic pathways

[28,60,62]. Recently, Harrington et al. [63] showed that formation

of signaling endosomes containing TrkA involves a mechanism

that affects actin dynamics, and that NGF, but not NT3, could

activate TrkA to form persistent, retrogradely transported

signaling endosomes. These results further distinguish local vs.

persistent signals, and signaling endosome formation from RCE,

which involves microtubules at initial stages of endocytosis [58]. It

should be noted that maturation and retrograde transport of

signaling endosomes and multivesicular bodies involves microtu-

bules at later stages [64,65].

The addition of ubiquitin (mono-ubiquitination, as opposed to

poly-ubiquitination, which targets cytoplasmic proteins to the

proteosome) to proteins involved in endocytosis, and to receptor

tyrosine kinases themselves affects sorting between CME vs. RCE

[55–57,60,62,66–68]. Several proteins that play a role in endocytic

sorting mechanisms (e.g., Epsin, Eps15, Hrs) contain a protein

domain (U1M) that binds ubiquitin [55]. Exactly how the network

of ubiquitin-U1M interactions among these proteins and clathrin

Figure 7. TrkA and p75NTRin endosomes and endosomal DRMs.
A) Endosomes from cells treated 10 min with NGF. Organelles that
emerged from cells mechanically permeabilized by a single pass
through a Balch homogenizer were subjected to velocity sedimentation
followed by equilibrium flotation as previously described [7]. Shown is
the flotation equilibrium gradient from velocity gradient fraction 3,
which contains TrkA and p75NTR endosomes (indicated) that floated to
their equilibrium density. Blots were probed with anti-pTrkA, -p75NTR,
and -SHP-1 (indicated). B) The detergent-resistant fraction containing
endosomes from untreated or NGF-treated cells before (no reaction) or
after in vitro reactions (+ATP) was fractionated on iodixanol velocity
gradients as previously described [34]. Pools from the bottom of the
gradient containing microtubules (MT) and control samples from the
top of the gradient (C) were collected for immunoprecipitations with
anti-tubulin (MTIP). One-ninth of each sample was TCA precipitated
before immunoprecipitation (input). Western blots were probed with
anti-TrkA and anti-p75NTR (indicated). pTrkA was not detected in
endosomal DRMs (not shown).
doi:10.1371/journal.pone.0035163.g007
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dictates receptor sorting is somewhat controversial [68]. In any

case, when receptors are ubiquitinated, they are sorted into the

RCE pathway to rapid degradation, as in the case for the EGFR in

high EGF concentrations [55]. TrkA degradation is dependent on

ubiquitination [69]. p75NTR and Trk-family receptors affect each

other’s ubiquitination and sorting into endosomes and lipid rafts.

The expression of p75NTR attenuates TrkA ubiquitination in HEK

293 cells, resulting in slower internalization and downregulation of

TrkA [70]. A high level of expression of p75NTR is thought to be

the reason for low levels of TrkA ubiquitination in PC12 cells.

RNAi knockdown of p75NTR in PC12 cells caused increased TrkA

ubiquitination and degradation after NGF treatment [70].

Our data suggest that p75NTR is not endocytosed by the same

mechanisms as TrkA, which is consistent with previous work [5–

7]. Though p75NTR associated with DRMs, it did not associate

with microtubule rafts, and its behavior was more like flotillin in

our experiments. Endosomes containing p75NTR overlapped with

only a subset of flotillin organelles in size and density, however

[7]. Flotillin has been shown to mediate an endocytic pathway

that is distinct from both CME and RCE [71]. EGF signaling

affects flotillin endocytosis and the actin cytoskeleton to cause cell

spreading [72]. In our experiments, flotillin in rafts was reduced

by GM1 treatment (Figure 3), but not by in vitro reactions that

increased microtubules in rafts (Figure 2). Flotillin was not

affected by NGF (Figure 6). Thus, while flotillin-dependent

endocytosis may be present in PC12 cells, our data suggests that

flotillin trafficking is not regulated by NGF receptor signaling,

and does not employ microtubule rafts.

If raft-associated TrkA is not incorporated into signaling

endosomes, its attraction of microtubules to the plasma membrane

may play a different role. Microtubules have been shown to be

involved in maintaining polarity in neurons and other cell types

both by selective anterograde delivery of secretory vesicles and

selective retrieval via endocytosis [73,74]. An important local

signal initiated by neurotrophins is to stimulate axon growth.

Neurotrophins cause axon growth and are attraction cues for axon

guidance, which employs some mechanisms in common with those

that induce cell polarity. Lipid rafts have been shown to play a role

in cytoskeleton organization and its interaction with the plasma

membrane to dictate cell polarity [73,75]. There is evidence that

rafts are involved in coordinating interactions between actin

filaments and microtubules. For example, integrins cause local

stabilization of microtubules at the leading edge in migrating cells

through a mechanism that involves Rho [76], and rafts are

endocytosed in detaching cells through Rac1 and actin [77].

In addition to a role for lipid rafts in growth cone guidance

[14,15], there is evidence that interactions with microtubules and

lipid rafts play a role in axon guidance [78]. NGF influences

microtubule dynamics at axon tips to cause axon growth [10].

This effect is mediated by TrkA signaling through PI-3 kinase and

GSK-3b to control the axon tip localization of microtubule plus-

end binding protein APC [10]. NGF, through this mechanism,

acts as a powerful attractant to growth cones, powerful enough to

overcome the strong inhibitory influence of chondroitin sulfate

proteoglycans in a nerve regeneration model [78]. Our data

showing that TrkA associates with microtubules in lipid rafts, and

that NGF enhanced polymerization of microtubules associated

with lipid rafts, are consistent with a role for lipid rafts in axon

guidance cues driven by NGF. The data suggest that NGF,

through TrkA, mediates axon guidance by attracting microtubules

to lipid rafts. These local signals that affect the cytoskeleton at the

cell cortex do not require persistent signaling, which explains

TrkA’s rapid dephosphorylation in microtubule rafts. A decrease

in p75NTR in microtubule-associated rafts in response to NGF and

TrkA can help explain how attraction signals overcome repulsive

ones initiated by p75NTR and its other co-receptors, NgR, a GPI-

linked protein that associates with lipid rafts [79], and Lingo-1

[11,80]. Differential association of TrkA and p75NTR with

microtubules and rafts may determine the outcome of attraction

vs. repulsion.

Materials and Methods

Most general chemicals were purchased from Sigma (St. Louis,

MO). NGF was a kind gift of William Mobley. Horse serum and

foetal calf serum were from Life Technologies (Gaithersburg,

MD). Iodixanol (OptiprepTM) was from Nycomed Pharma, Inc.

(Oslo, Norway). 125I radioisotope was obtained from NENTM Life

Science Products Inc. (Boston, MA). The anti-rat TrkA antibody

(RTA) was a kind gift of Dr. Louis Reichardt (University of

California, San Francisco), and was also purchased from Upstate

Biotechnology (Lake Placid, NY). Phospho-TrkA antibody was

from Cell Signalling Technologies (Danvers, MA). Anti-p75NTR

and anti-SHP-1 were obtained from Santa Cruz Biotechnology

(Santa Cruz, CA) and Covance/BabCo (Princeton, NJ/Berkeley,

CA). Anti-flotillin was purchased from Transduction Laboratories

(Lexington, KY), sc11 anti-TrkA from Santa Cruz Biotechnology

(Santa Cruz, CA), and anti-b-tubulin was obtained from Sigma.

Anti-mouse and –rabbit-HRP was obtained from Amersham

Biosciences (Buckinghamshire, UK, or Piscataway, NJ).

Cell Treatments and In Vitro Reactions
Wild-type PC12 cells were obtained from Lloyd Greene

(Columbia University) and grown on collagen-coated plates in

RPMI 1640, 5% fetal calf serum, 10% horse serum as described

[81]. 125I-NGF was prepared as previously described [36]. In some

experiments biotinylated lactoperoxidase was used (Sigma) and

removed by binding to neuravidin beads (Pierce, Rockfork, IL)

prior to separation of radiolabeled protein from free iodine.

PC12 cells (typically 0.5–16109) were harvested in PBS and

washed in cold PEE (PBS/1mM EGTA/1mM EDTA), PGB

(PBS/0.1% glucose/0.1% BSA) as described [35,36]. For

comparison of treatment conditions, equal volumes of cell

suspension were dispensed. Where NGF was added, 1 nm NGF

or 125I-NGF was bound to a rotating cell suspension 1 h at 4uC in

PGB. Unbound ligand was removed by a wash in PGB to avoid

fluid-phase endocytosis. For GM1 treatments, cells were harvest-

ed, separated into two equal aliquots, and incubated in either

serum-free media with 65 mM GM1, or serum-free media alone,

for 5 hours at 37uC in a 5% CO2 incubator. After this incubation

period the cells were washed and 125I-NGF was bound to the cells

above.

Cells were fractionated directly or warmed in PGB to 37uC
exactly 2, 10, or 30 min, followed by a temperature-quench in ice

water. Cells were then centrifuged 100 6 g for 3 minutes and

washed with 5 ml PEE, followed by a wash with 5 ml buffer B

(cytoplasmic ionic composition: 38 mM each of the K+ salts of

aspartic acid, glutamic acid and gluconic acid, 20 mM MOPS

pH 7.1 at 37uC, 10 mM potassium bicarbonate, 0.5 mM

magnesium carbonate, 1 mM EDTA, 1 mM EGTA), and

resuspended in buffer B with 5 mM reduced glutathione

(abbreviated BB+G). Protease inhibitors were added to a final

concentration of 174 mg/ml PMSF, 1 mg/ml o-phenathroline,

10 ng/ml pepstatin, 10 ng/ml chymostatin, 10 ng/ml leupeptin,

and 10 ng/ml aprotinin. Cells were mechanically permeabilized

by a single passage through a Balch homogenizer in buffer B as

described [7,35,36].
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Where in vitro reactions were performed, the permeabilized cell

suspension was split and one sample was warmed for 15 minutes at

37uC with an ATP regenerating system (1 mM ATP, 8 mM creatine

phosphate, 5 mg/ml [240 units/mg] creatine kinase). After reac-

tions, the samples were quenched in ice water for 3–5 minutes.

Dorsal root ganglia neurons were obtained from 30–40

embryos at stage E13. Ganglia were dissected from embryos in

Leibovitz’s L-15 media (Gibco BRL), washed Eagles Balanced

Salt Solution, and treated with 0.05% trypsin for 25 min. Cells

were centrifuged 200 6g 4 min, then resuspended and plated on

polylysine/laminin-coated 10 cm dishes and cultured in MEM,

10% FBS, 0.2% glucose, 2 mM glutamine with antibiotics (Pen/

Strep) in the presence of 1.7 nM NGF for 4–10 days. The yield

was about 8 million cells total. To prepare DRMs from neurons,

cells were rinsed in warm PBS, then cold PEE was added and

plates placed on ice for 30 min. This caused the cells to lift from

the dish without breaking apart. Cells were recovered by

centrifugation bound to NGF, warmed, and DRMs were

prepared as described above for PC12 cells, except that neurons

were swollen in hypo-osmotic 0.1 6 BB prior to mechanical

permeabilization with the Balch homogenizer.

Velocity and Equilibrium Centrifugation
Large membranes were removed from the mechanically

permeabilized cell suspension by centrifugation at 1000 6 g

[7,35,36]. Gradients used iodixanol mixed with buffer B plus

glutathione (BB+G) as media; continuous gradients were prepared

using a two-chamber mixer. The supernatant of the 1000 6 g

centrifugation (S1) was layered over 0–30% velocity gradients. For

two dimensional separations (velocity followed by equilibrium

gradients), five velocity gradient fractions were collected, mixed

with 60% iodixanol to a concentration of 32.5% or greater, and

overlaid with a continuous 0–30% iodixanol/BB+G gradient and

centrifuged to equilibrium (16–18 hr). Refractive indices were

measured using an Abbe refractometer (Bausch and Lomb) and

converted to density using the formula r= R.I.6 3.4319–3.5851,

which was determined empirically by weighing known concentra-

tions of iodixanol in buffer B.

DRM Preparations
Cracked cell suspensions were centrifuged at 1,000 6 g for

10 minutes (pellet = P1; supernatant = S1). The P1 pellet was

resuspended in buffer B containing protease inhibitors. Triton X-

100 or IGEPAL (Sigma) was added to a final concentration of 1%

and the sample was vortexed and left on ice for at least 1 hour. The

sample was centrifuged at 10,000xg for 10 minutes to separate the

detergent-soluble membranes (supernatant = P1M) from the deter-

gent-insoluble pellet. This pellet was then resuspended in 180 ml BB

with protease inhibitors and Triton X-100 was again added to a 1%

concentration. Iodixanol (OptiPrepTM) was added to a 40%

concentration and the samples sonicated for 2 6 5-second pulses.

This step was necessary as in preliminary experiments without

sonication, DNA and cytoskeletal elements often clogged the needle

of the gradient fraction collector. Alternatively, instead of sonica-

tion, 2 ml Benzonase (Novagen, Madison, WI) was added to the

resuspended detergent resistant pellet and the sample incubated on

ice for 1 hour to break up DNA prior to adding iodixanol. The

method used for each set of experiments presented is identified in the

figure legends.

Samples were placed into 5 ml ultracentrifuge tubes and 10–

40% (for sonicated samples) or 15–48% (for Benzonase-treated

samples) continuous iodixanol gradients in BB were poured over

the top of the samples at 4uC. Gradients were centrifuged to

equilibrium at 100,000xg for 16–18 hours. Approximately 200 ml

fractions were collected from the bottom of the ultracentrifuge

tube. Radioactivity in each fraction was determined using a

gamma counter. The refractive index of each gradient fraction was

measured and the density calculated based on a formula

determined empirically by weighing iodixanol/BB standards of

known concentration. TCA was added to each fraction to a final

concentration of 10%, and left overnight at 4uC to precipitate

protein. Protein precipitates were recovered by centrifugation at

3,5006g for 35 minutes or 10,0006g for 20 min, then washed in

ice-cold acetone and re-centrifuged. Precipitates were air dried at

room temperature and 7 M urea sample buffer (7 M urea,

125 mM Tris HCl pH 6.95, 0.1% w/v bromophenol blue with

100 mM DTT) was added and samples were heated to 55uC for

15 minutes before analysis by SDS-PAGE.

Microtubule Immunoprecipitations
For immunoprecipitation of microtubules, 10 mM taxol was

added to the resuspended detergent-resistant pellet (treated with

Benzonase) and gradients to stabilize microtubules. Where

indicated, 25 mg/ml biotinylated tubulin and 12.5 mM taxol (both

from Cytoskeleton, Inc., Denver, CO) were added during the last

5 min of 15 min in vitro reactions prior to preparation of DRMs.

For microscopy, the sample was brought to 10% glycerol, 5% BSA

and 1:100 Texas Red-streptavidin (Vector Laboratories, Burlin-

game, CA) were added and incubated on ice for 2 hr. The

permeabilized cells were washed 3X in buffer B with 0.1% BSA

and recovered by centrifugation at 100 6 g, 3 min. The sample

was resuspended in buffer B with 20% glycerol, mixed with

VectaShield (Vector Laboratories) and viewed with a 100x

objective on a Nikon E800 with Hamamatsu ORCA II detector.

The presence of floating membranes was confirmed by western

blots of gradient fractions in parallel gradients on one half of the

sample. Fractions containing the floating membranes of density

1.21- 1.15 g/ml, determined by refractive index measurements,

were pooled and buffer components were added to 10% glycerol,

1% BSA,150 mm M NaCl, 50 mM Tris pH 7.7, 1% IGEPAL,

1 mM EDTA, and 10 mM taxol. Where indicated, samples were

incubated overnight at 4uC with anti-a-tubulin (DM1A, Sigma) or

anti-TrkA (RTA, Upstate Biotechnology). Antibodies were

recovered with Pierce Ultralink ProteinA/G beads; biotinylated

microtubules were recovered with Neuravidin beads. Bead

suspensions were rotated 1 hr at 4uC, then recovered by

centrifugation 1000 6 g for 5 min, washed twice in wash buffer

(10% glycerol, 150 mm M NaCl, 50 mM Tris pH 7.7, 1%

IGEPAL, 1 mM EDTA, 10 mM taxol), then once in 0.01X wash

buffer, and resuspended in SDS-PAGE sample buffer.

Microtubules were immunoprecipitated from the detergent-

resistant endosome fraction exactly as described [34]. Briefly,

PC12 cells were treated with or without NGF and subjected to in

vitro reactions as above. The organelles that emerged from

mechanically permeabilized cells, which have been shown to

contain TrkA bound to NGF [7,35,36], were incubated with 1%

IGEPAL. Detergent-resistant material was concentrated by

centrifugation at 100,000 6 g, 1 hr, resuspended and applied to

iodixanol velocity gradients. Fractions at the bottom of gradients

containing microtubules, and control samples from the top of the

gradient, were individually pooled and immunoprecipitated with

anti-a-tubulin as described above except without taxol.

SDS-PAGE and Western Blotting
SDS-PAGE gels were run and western blotted to nylon-

reinforced nitrocellulose (Schleicher and Schull, Dassel, Ger-

many) as described [82]. Where different treatment conditions

are compared in one experiment, all blots were incubated in the
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same antibody solution on the same day and exposed for the

same amount of time. Blot incubations were performed in 5%

nonfat dry milk, 150 mM NaCl, 50 mM Tris pH 7.7, 0.05%

Tween 20, or conditions specified by the antibodies’ manufac-

turer. Secondary anti-mouse or –rabbit antibodies coupled to

HRP (Amersham) were used and chemiluminescent signals

generated by Amersham ECLTM or Super Signal West Pico

(Pierce). The blot was either exposed to X-ray film (Fuji medical

x-ray film, HR-G 30) or exposed directly in a Fujifilm

Intelligent Dark Box II with a cooled CCD camera (LAS-

1000, or LAS-3000, Fuji Photo Film Co. Ltd, Japan). Blots were

stripped of antibodies for re-probing with Restore (Pierce), TBS

pH 2.0, or in 0.5 M NaCl, 0.2 M glycine, pH 2.8.

Image Analysis and Calculations

Chemiluminescent data captured directly or on film by the

LAS-1000 or 3000 image analyser were analysed using Fuji

Image Gauge software (Fuji Film Co. Ltd). For each protein

these area values were added together to give a ‘total gradient’

or ‘total DRM’ protein value. The protein band intensities for

the S1 and P1M samples were calculated by taking into account

the volume that was loaded onto the gel compared with the

original S1 and P1M sample size. Amounts of 125I-NGF in each

fraction were determined using a gamma counter. For each

protein (or 125I-NGF), the amount in the floating DRM peak

was calculated and expressed as a percentage of that particular

protein in all cell fractions. P values were calculated using the

students t-test.
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